
1
page.

Contents

12. Decentralized Storage

11. Cryptocurrency Payments

10. Smart Contracts and Tokenization

8. Security
9. Decentralized Identity Management

1. Preface
2. System Architecture Overview
3. Infrastructure on AWS
4. Tools and Technologies
5. Microservices Architecture
6. Logging and Monitoring
7. Admin Panel with Role-Based User Access (RBUA)

11.1. Detailed Explanation

11.2. Tools Recommended and Their Role

11.3. Workflow in Greater Detail

11.4. Integration with Other Components

12.1. Tools Recommended and Their Role

12.2. Workflow in Greater Detail

12.3. Integration with Other Components

10.1. Detailed Explanation

10.2. Tools Recommended and Their Role

10.3. Workflow in Greater Detail

10.4. Integration with Other Components

7.1. Features of the Admin Panel

7.2. Technologies and Architecture

7.3. Integration with Platform Components

7.4. Benefits

9.1. DID-Based Authentication Using Standards Like OAuth

9.2. Integration of Decentralized Key Management Systems (DKMS)

9.3. Smart Contracts for Access Control and Authentication

9.4. End-to-End Integration of Tools

NEXT BASKET Architecture

2
page.

16. Tokenomics Design

13. Messaging Network

14. Integration of Oracles

15. Layer 2 for Optimization and Scaling

15.1. Detailed Explanation

15.2. Tools Recommended and Their Role

15.3. Workflow in Greater Detail

15.4. Integration with Other Components

15.5. Use Cases in NEXT BASKET

13.1. Detailed Explanation

13.2. Tools Recommended and Their Role

13.3. Workflow in Greater Detail

13.4. Integration with Other Components

13.5. Use Cases in NEXT BASKET

14.1. Detailed Explanation

14.2. Tools Recommended and Their Role

14.3. Workflow in Greater Detail

14.4. Integration with Other Components

14.5. Use Cases in NEXT BASKET

3
page.

1. Preface

2. System Architecture Overview

content.

resilience.

Blockchain Integration for identity, payments, and decentralized data
management.

Front-End interfaces (e.g., React) for user interactions.

Decentralized Storage (e.g., IPFS, Filecoin) for permanent or high-availability

for off-chain data feeds and decentralized notifications.

The overall architecture of the product is structured to support a hybrid of traditional
e-commerce functionalities and Web3 solutions. It includes:

Microservices for essential business logic, broken down for scalability and

NEXT BASKET is an innovative platform designed to revolutionize e-commerce by
blending Web3 functionalities with traditional online store management. The platform
aims to give clients the ability to create and manage decentralized online stores,
integrating cutting-edge blockchain technologies (e.g., Ethereum, Polygon, and
Arbitrum) with a scalable, microservices-based infrastructure. Through its native utility
token, NEXT BASKET ensures a seamless e-commerce experience by incorporating
decentralized identity management, cryptocurrency payments, and carefully structured
tokenomics.

•
•
•
•
• Messaging and Oracles

4
page.

3. Infrastructure on AWS

•

•

•

•

•

•

•

•

•

•

Compute:
Amazon EC2

CI/CD:
AWS CodePipeline

Monitoring:
AWS CloudWatch

Networking:
AWS API Gateway

CloudFront CDN

Caching:
Redis

Security and Segregatio
VPC & NAT Gateway

AWS WAF or Cloudflare

Event-Driven Com
SQS/RabbitMQ/Kafka

Containerization:
Docker and Kubernetes

Database:
Amazon RDS

Amazon DynamoDB

Decentralized databases

Storage:
Amazon S3

ELK Stack

•

•

•
•
•

•

•

•

•
•

•

•
•

•

releases.

plus the

 for secure API management.

 for caching and content delivery.

for structured data,

 for key-value operations,

 like OrbitDB for certain Web3 data needs.

 for deploying and managing microservices.

for automated deployments, supporting blue-green

for real-time logging and analytics.

for session storage and data caching.

n:
for isolating services within AWS.

 for firewall and traffic filtering.

munication:
for asynchronous communication among services.

 for microservices deployment. Amazon EC2 for microservices
deployment.

for general storage, integrated with IPFS or Arweave for critical
decentralized data.

5
page.

4. Tools and Technologies

5. Microservices Architecture

•

•

•
•

•

•
•

Frontend:

• React
Backend:

• Node.js
Block

Integration:

‣
‣

Redux

Security:
AWS Secrets Manager,

Overview:

Usage in NEXT BASKET:

‣ ‣

Overview:

Usage in NEXT BASKET:

‣ ‣

Wallet Integrations:
MetaMask, Fireblocks, Web3Auth, etc.

•

•

•

•

•

•

 with or other state management.

with Express or NestJS.

chain Integration:
Ethereum mainnet, Polygon, or Arbitrum for Layer 2 scaling.

Critical for deploying new features in payment services, identity
management,
or smart contract integration without interrupting active sessions.

Quickly revert to the old environment if issues arise.

Technologies: Docker, Kubernetes, Istio (Service Mesh)

• Blue-Green Deployments
Maintain two environments—“Blue” (current production) and

“Green” (new version)—to ensure zero-downtime upgrades.

Orchestrated via Kubernetes, which manages traffic switching.

AWS CodePipeline/CodeDeploy orchestrates the deployment process.

Service Mesh with Istio
 Istio provides a layer for managing service-to-service traffic,

enhancing observability and security.

IAM policies, and smart contracts for identity and
payment validation.

Data Storage:

S3, RDS, IPFS, and additional blockchain-based storage as needed.

Fine-grained control over communications between services (e.g., load
balancing, traffic policies).

Simplified debugging with tracing, logging, and metrics.

•
•

•

6
page.

•

•

•

•

•

•

Integration:

‣ ‣

Integration:

‣
‣

Integration:

‣
‣

Technologies

• Centralized Logging with ELK Stack
Overview:

Blockchain Analytics for Smart Contract Transactions
Overview:

Usage in NEXT BASKET:

‣

‣
‣

: ELK Stack, Prometheus, Blockchain Analytics

Monitors token distribution, staking, and suspicious activities.

ELK (Elasticsearch, Logstash, Kibana) centralizes log collection,
storage, and visualization.

Usage in NEXT BASKET:

Aggregates logs from microservices, APIs, and Kubernetes, providing a
unified view.

Facilitates root-cause analysis through dashboards and searches.

Tracks on-chain actions like token transfers, contract executions,
and transaction failures.

Data from Etherscan or similar APIs is pulled into the ELK stack or custom
dashboards.

Provides real-time insights into the blockchain aspects of the platform.

Logstash collects logs from different sources (including blockchain
interactions).

Elasticsearch indexes them for quick searches, while Kibana is used for data
visualization.

Sidecars (Envoy) run next to each microservice, controlling traffic.

Administrators can configure traffic routing, fault injection, and rate-limiting
centrally.

6. Logging and Monitoring

•

•

7
page.

7. Admin Panel with Role-Based
User Access (RBUA)

logs.

settings.

templates.

Each role has customizable CRUD rights on users, tokens, orders,
products, etc.

Dynamic updates—no code changes needed to alter permissions.

Full access, including system settings and tokenomics.

 Access to core business areas (orders, support) with limited
configuration rights.

Restricted to their own store data and product
management.
Support Staff: Handles user issues, ticketing, and limited actions.

Read-only access for compliance and audits.

Middleware checks roles before granting access to sensitive endpoints.

: Set up Layer 1 and Layer 2 networks (addresses, gas
fees).

: Adjust token issuance, staking, distribution, and
monitor supply metrics.

 Configure IPFS, Filecoin, etc., and track usage.

: Configure Waku or XMTP and notification

The admin panel is pivotal for configuring and supervising the NEXT BASKET
platform. It offers granular role-based controls, letting administrators handle platform
operations efficiently and securely.

7.1. Features of the Admin Panel

Create, edit, or deactivate user accounts; view activity

Approve merchant onboarding; configure store-level

•

•

•

Backend Enforcement:

‣System Configuration
Blockchain Settings

Tokenomics Management

Storage Management:

Messaging and Notifications

Role-Based User Access (RBUA)

• User Roles:
Super Admin:

Admin:

 Merchant Admin:

Auditor:

Permissions:

‣
‣

User and Merchant Management
User Management:

Merchant Management:

•

•

•

•

•
•

•

•

‣
‣
‣
‣
‣

8
page.

•

•

•

•

•

•

•

•

•

Backend:

Frontend:

Database:

Logging and Monitoring:

Monitoring and Analytics
Real-Time Dashboards:
times.

Transaction Logs:

Reports:

Security and Compliance
Access Logs:

Audit Tools:

Secure Access:

Deployment and Scalability:

Customization and Localization
Interface Customization:

Multi-Language Support:

Authentication/Authorization:

•

•
•

•
•

•

•
•

OAuth 2.0 or OpenID Connect for identity.

JWT tokens for stateless sessions.

ELK stack for admin-side logs.

Prometheus + Grafana for backend metrics.

Kubernetes handles container orchestration.

CI/CD pipelines automate testing and deployment.

Node.js (Express/NestJS) for admin APIs.

GraphQL (optional) for flexible queries.

Custom RBAC (Role-Based Access Control) middleware.

Skins, layouts, role-based content.

 Adapts for global user bases.

React.js for an interactive UI: Redux or Context API for state.

Material-UI or Ant Design for polished interfaces.

PostgreSQL/MySQL for relational data.

Redis for caching frequently accessed data (roles, permissions).

Tracks admin activity, configuration changes, login attempts.

 Ensures GDPR or AML compliance; encryption for sensitive
operations.

Two-factor authentication for admin accounts; end-to-end
encryption on critical data.

Transaction throughput, token operations, response

Detailed logs of on-chain and off-chain activities.

Customizable reports for usage, performance, and financial metrics.

7.2. Technologies and Architecture

•
•

•
•
•

•
•

•
•

•
•

•
•

9
page.

7.4. Benefits

7.3. Integration with Platform Components

•

•

•

•

•
•
•

•

Scalable:

Messaging:

Blockchain:

Microservices:

Logging/Analytics:

Smart Contract Audits
Overview:
contracts.

Usage:

Integration:

Technologies:

• IAM Roles and Policies on AWS
Overview: A
principles.

Usage:

Integration

•
•

•
•

•

•

metrics.

AWS IAM, Smart Contract Audits, Encryption

Admins configure Waku topics and user notification preferences.

Admins can modify blockchain settings (network addresses, fees).

On-chain analytics for token and smart contract monitoring.

Aggregation in dashboards for compliance and real-time oversight.

Modern frameworks ensure it can handle large spikes in traffic.

REST/GraphQL endpoints to coordinate identity, payments, storage, etc.

RBAC ensures secure microservice calls.

Audits detect vulnerabilities in token, escrow, and identity

 Tools like CertiK, OpenZeppelin, or Trail of Bits validate code before
deployment.

Automated CI/CD pipelines run checks with MythX or Slither for
early issue detection.

WS IAM restricts resource access based on least-privilege

 Assign roles to EC2, Lambda, or container tasks, controlling who can
access S3, RDS, etc.

: Secrets stored in AWS Secrets Manager; only authorized roles can
retrieve them.

Configurable and Secure: Fine-grained control paired with robust encryption
and auditing.

Efficient: Streamlines operations for token management, user roles, and platform

8. Security

•

•

•

•

•

•

10
page.

•

•

•

•

•

•

What is DID?

How OAuth Fits

Integration with the Architecture

Data Encryption and Security Standards
Overview:

Usage:

Integration:

Integration with Other Components
Frontend:

Blockchain:

Kubernetes:

Use Cases in NEXT BASKET
Zero-Downtime Updates

Proactive Issue Resolution:

Granular Access Control:

Transparency:

•
•

•

•
•

•

•

•

•

•

TLS encryption ensures secure interactions.

On-chain analytics integrated with security monitoring for
suspicious activity detection.

Service mesh polices secure inter-microservice traffic.

DID records may be stored on Ethereum or Arbitrum, ensuring immutability.

OAuth flows use DID-based credentials, verified via DID-compatible identity
providers (e.g., uPort, Verifiable Credentials).

Decentralized Identifiers are self-sovereign, independent digital IDs. The DID
subject controls it without a central authority.

The W3C DID standard ensures consistent structure and verifiability.

: Blue-green deployments for new token features
without affecting live users.

Centralized logs and metrics help identify and
resolve performance bottlenecks.

IAM ensures only authorized identities interact with
sensitive systems.

 Audited smart contracts build trust with stakeholders.

 Encryption protects data at rest and in transit.

TLS for all microservice communications; data in RDS or S3 encrypted
using AWS KMS.

AWS Certificate Manager handles SSL/TLS for external endpoints.

OAuth is an open standard for authorization, commonly used to grant external
apps access to user data without sharing passwords.

By integrating DID with OAuth, the platform can validate user identities on-
chain while leveraging OAuth tokens for session management.

9. Decentralized Identity Management

9.1. DID-Based Authentication Using Standards Like OAuth

•

•

•

•

•
•

11
page.

9.4. End-to-End Integration of Tools

9.3. Smart Contracts for Access Control and Authentication

9.2. Integration of Decentralized Key Management Systems
(DKMS)

•

•

•

•

•

•

•

•

Integration

Authentication

Access Control

What is DKMS?

How It Integrates

Frontend (React):

Backend (Node.js):

Architecture Integration

•

•

•

•

•
•

•
•

•
•

•
•

•
•

•
•

A framework for users to manage their private keys without relying on
centralized entities.

Tools like MetaMask or uPort store keys locally, giving users full control.

Role-based access logic can be embedded in contracts.

Merchants might have elevated privileges, while customers only hold basic
transaction rights.

DKMS handles cryptographic operations for identity verification and
transaction signing.

For instance, a user’s purchase transaction is signed with the private key in
their local wallet, and the contract verifies it on-chain.

Enforces business logic, bridging the blockchain with internal services.

Interacts with smart contracts to confirm user permissions before finalizing
actions.

Users log in with wallets or identity providers.

Actions (e.g., buying an item) prompt signature requests that are broadcast
on-chain.

MetaMask or other wallets connect to the React frontend.

Node.js microservices verify the transaction on Ethereum or similar networks.

Smart contracts validate DID-based credentials.

Ensures only users with valid on-chain identities can execute certain platform
actions.

Deployed primarily on Ethereum, Polygon, or Arbitrum.

The frontend and backend coordinate to facilitate transaction signing and data
verification.

12
page.

•

•

•

•

•

•

•

•

ERC-20

Solidity

ERC-1155

DEX APIs

Blockchain:

ERC-721 (NFT)

Asset Tokenization

Merchant Payments

•
•

•
•

•
•

•

•

•

•

•
•

Fungible tokens used for utility or governance.

Supports payments, rewards, and partial ownership.

Inventory, loyalty rewards, or certificates minted as NFTs.

References stored on IPFS to ensure metadata integrity.

Primary language for Ethereum and EVM-compatible chains.

Implements logic for escrow, staking, and payments.

Integrate with Uniswap or 1inch for liquidity and token swaps.

Multi-token standard blending fungible and non-fungible functionalities.

Processes identity checks, token transactions, and updates to user roles.

Layer 2 solutions (e.g., Polygon, Arbitrum) reduce costs.

Payment contracts handle funds, storing them in escrow until delivery is
confirmed.

Smart contracts and tokenization form the core of NEXT BASKET’s decentralized
commerce. By using Solidity and standards like ERC-20, ERC-721, and ERC-1155,
the platform automates payments, ownership transfers, and asset management in a
trustless environment.

10.2. Tools Recommended and Their Role

Non-fungible tokens for unique items, e.g., digital certificates, special product
badges.

10. Smart Contracts and Tokenization

10.1. Detailed Explanation

10.3. Workflow in Greater Detail

13
page.

•

•

•

•

•

•

•

•

•

•

Frontend:

Binance Pay

DEX Integration

Payment Systems:

Backend Services:

Coinbase Commerce

Blockchain Networks:

Token Economy Management

Layer 2 Solutions (Optimistic Rollups, etc.)

Smart Contracts (Escrow, Payout Distribution)

•

•
•

•

•

•

•

•
•

•
•

•

• Securely lock funds until conditions are met.

Expands the range of accepted cryptocurrencies.

Facilitates multi-party split payments (e.g., profit sharing).

Handle high-volume or microtransactions at reduced costs.

React UI allows users to manage tokens, stake, or mint NFTs.

Ethereum (mainnet) for security, Polygon/Arbitrum for scaling.

Allows on-platform token swaps or price discovery.

Chainlink oracles can provide price feeds for real-time valuation.

Smart contracts tie into crypto gateways for frictionless payments.

Utility token powers transactions, staking rewards, and governance.

Node.js microservices trigger or listen to events (e.g., token transfers).

Direct gateway to accept major cryptocurrencies (BTC, ETH, stablecoins).

Webhooks let the platform know when payments are completed.

NEXT BASKET’s crypto payment system lets customers pay in various digital
assets, while merchants can seamlessly receive, hold, or convert them. By combining
decentralized escrow, profit-sharing contracts, and automated fiat conversion, it
ensures a user-friendly experience.

11.2. Tools Recommended and Their Role

11.1. Detailed Explanation

10.4. Integration with Other Components

11. Cryptocurrency Payments

14
page.

•

•

•

•

•

•

•

•

•

• Logging:

Frontend:

Blockchain:

Initialization

Microservices:

Layer 2 Scaling

Transaction Processing

Escrow and Distribution

Crypto-to-Fiat Conversion

Conversion and Compliance

•

•
•

•
•

•

•

•

•
•

•

•

•

•

Final settlement on Ethereum or a chosen Layer 2.

Payment events recorded in the ELK stack and chain analytics.

Users see real-time payment confirmations and status updates.

Automates conversions, safeguarding merchants from volatility.

Payment microservice orchestrates gateways, escrow, and conversion.

Once funds arrive, a webhook notifies the backend.

Escrow contract holds the payment until the platform confirms product
delivery.

For small or frequent transactions, the system uses Optimistic Rollups to
reduce gas.

Regular batch settlements on Ethereum for final security.

If merchants want fiat, an automatic process converts crypto into USD/EUR.

AML/KYC procedures are enforced by the platform’s compliance layer.

Customer selects “pay with crypto.”

The system generates a payment address or QR code via Coinbase/Binance
Pay.

On confirmation, the contract disburses funds to merchants or splits among
partners.

11.3. Workflow in Greater Detail

11.4. Integration with Other Components

15
page.

12. Decentralized Storage

12.2. Workflow in Greater Detail

12.1. Tools Recommended and Their Role

12.3. Integration with Other Components

•

•

•

•

•

•

•

•

•

•

•

•

IPFS

Filecoin

Arweave

Logging:

Frontend:

Amazon S3

Blockchain:

Microservices:

Uploading and Indexing

Relational/NoSQL Databases

Permanent Archiving (Arweave)

Hybrid S3 + Decentralized Storage

•

•

•

•

•

•

•

•

•

•

•

•

•

Orchestrate user uploads, retrieval, and hashing.

Smart contracts reference IPFS/Arweave hashes.

Retrieves file data from IPFS nodes or fallback (S3).

Incentivized storage for large datasets or redundancy.

Permanent data storage; suitable for regulatory archives.

Monitoring usage, ensuring content is pinned and accessible.

Centralized object storage for temporary or non-critical data.

Content-addressed storage for product images, documents, or metadata
requiring immutability.

Files are uploaded via the frontend, hashed, and pinned on IPFS or stored in
Filecoin.

Database references the hash or storage ID for quick retrieval.

S3 for quick-access caching, IPFS/Filecoin for redundancy and trustlessness.

For structured data (orders, user profiles) and references to decentralized files.

Important data is encrypted and stored on Arweave for immutable, permanent
access.

16
page.

13. Messaging Network

13.1. Detailed Explanation

13.3. Workflow in Greater Detail

13.2. Tools Recommended and Their Role

13.4. Integration with Other Components

Non-sensitive metadata can be collected centrally.

XMTP can store/replay messages if the receiver is offline.

Wallet-based messaging for user support or notifications.

LibP2P handles finding peers, ensuring stable connections.

Pub/Sub for decentralized broadcasts and light node support.

Communicate over decentralized channels for internal coordination.

Underlying framework for secure peer discovery and communication.

A service or user sends an encrypted message to a topic or a specific
recipient.

Signed data can be transmitted for contract interactions (e.g., dispute
resolution).

Nodes subscribe to relevant topics, receiving only matching messages.

Peer-to-peer, end-to-end encrypted messages, often using wallet-based
identities.

A decentralized messaging network underpins communication between services
and users. By using protocols like XMTP, Waku, or LibP2P, NEXT BASKET gains secure,
private, and fault-tolerant channels.

•

•

•

•

•

•

•

•

•

•

•

XMTP

LibP2P

Routing

Frontend

Blockchain

Microservices

Logging/Analytics

Waku (Whisper v2)

Optional Persistence

Message Initialization

Publishing and Subscribing

•

•

•

•

•

•

•

•

•

•

•

17
page.

14.1. Detailed Explanation

14.3. Workflow in Greater Detail

13.5. Use Cases in NEXT BASKET

14.2. Tools Recommended and Their Role

•
•
•

•

•

•

•

•

•

•

•

Chainlink

Aggregation

Data Request

Fetching Data

Chainlink VRF

Node Operators

Validation Mechanisms

Order Updates:

User Support:

Token Economy Alerts:

Delivery to Smart Contracts

proposals.

Chainlink aggregates results, discarding outliers.

Decentralized services that retrieve and verify data.

Multiple node operators gather info from various sources.

A smart contract calls Chainlink for a price or shipping update.

Fetches data from external APIs (e.g., crypto prices, shipment trackers).

Aggregation ensures reliability and mitigates single-point failures.

Aggregation contracts weed out anomalies, ensuring accurate final values.

Provides provably fair random numbers for loyalty rewards or prize events.

 Real-time notifications on shipment or payment status.

Secure user-service chat.

Broadcast changes in staking rewards or governance

Oracles like Chainlink bring off-chain data on-chain, enabling automated triggers for
shipping events, dynamic pricing, or external market feeds.

Contract receives validated data, triggering next steps (e.g., releasing escrow).

14. Integration of Oracles

•
•

•

•

•

•

•

•

•

18
page.

15.1. Detailed Explanation

15.3. Workflow in Greater Detail

14.5. Use Cases in NEXT BASKET

15.2. Tools Recommended and Their Role

14.4. Integration with Other Components

•

•

•

•

•
•
•

•

•

•

•

•

Polygon

Arbitrum

Frontend

Optimism

Smart Contracts

Batch Processing

Payment Systems

APIs and Logistics

Dynamic Token Pricing:

Delivery Confirmation:

Randomized Rewards:

Transaction Offloading

•

•

•

•

•

•

•

•

•

Displays oracle-fed updates (e.g., location tracking).

Rely on timely, accurate data for condition-based logic.

Use real-time exchange rates to finalize user transactions.

High-speed sidechains for microtransactions, NFT minting.

Optimistic rollups for subscription or bulk order processing.

Users or merchants interact on Layer 2, significantly lowering costs.

Rollups to reduce fees and increase throughput, suitable for payment
settlements.

Connect logistics provider data to Chainlink for on-chain confirmation.

 Real-time price feeds for stable valuations.

Automated escrow release upon proof-of-delivery.

Chainlink VRF for fair distribution in loyalty programs.

Rollup solutions bundle many transactions, submitting them periodically to
Ethereum.

Layer 2 solutions handle the limitations of Ethereum’s mainnet—namely, high gas and
limited throughput—by offloading computations and batching transactions.

15. Layer 2 for Optimization and Scaling

19
page.

•

•

•

•

•

•

•
•
•
•

Frontend

Settlement

Microservices

Smart Contracts

Blockchain Layer

Cross-Layer Assets

Cost-Effective Payments:

High-Frequency Rewards:

NFT Marketplaces:

Order Settlements:

•

•

•

•

•

•

Smart contracts on both mainnet and L2.

Utility tokens can be bridged between L1 and L2.

Payment services route smaller transactions to L2.

Finalizes on Ethereum to retain security guarantees.

Guides users to deposit/withdraw tokens across layers.

Staking, rewards, or escrow operate at lower cost on L2.

Minimal fees for day-to-day transactions.

 Handling loyalty points or multi-step staking.

Bulk minting and trading with reduced gas.

Process large volumes on L2 for efficiency.

15.5. Use Cases in NEXT BASKET

15.4. Integration with Other Components

20
page.

16. Tokenomics Design

Development Fund: 40%

Marketing and Airdrops: 20%

Governance Tokens: 15%

Legal and Compliance: 10%

Team and Advisors: 10%

Reserve Fund: 5%

Payments, staking, governance, loyalty points.

Governance tokens for community-driven decisions.

Reserve tokens for exchange liquidity.

(No changes applied; this section remains as originally presented.)

•

• Token Utilities

Token Allocation

•
•
•
•
•
•

•
•
•

21
page.

Final Note
This revised document provides improved clarity, consistent terminology, and

comprehensive details about the NEXT BASKET Web3 architecture. It does not alter
any of the tokenomics or allocation figures—only the text around the architecture and
related processes has been edited for correctness and clarity.

